Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

76-05-1 - Trifluoroacetic acid, 99% - TFA - L06374 - Alfa Aesar

L06374 Trifluoroacetic acid, 99%

CAS Number

Size Price ($) Quantity Availability
25ml 25.83
100ml 49.75
500ml 145.23
Add to Cart Add to Quote Request View Item

Trifluoroacetic acid, 99%


Chemical Properties

Formula Weight
Melting point
Boiling Point
Refractive Index
Miscible with ether, acetone, ethanol, benzene, hexane and carbon tetrachloride.


The combination of properties like solubility in most of the solvents, volatility, catalytic property, and strong acidity with non-oxidizing nature makes it a widely used reagent in organic synthesis. Trifluoroacetic acid is an important building block in the synthesis of pharmaceuticals, agrochemicals and performance products. It is a precursor to many fluorinated compounds, and widely used in peptide synthesis and other organic transformations involving deprotection of t-BOC group. TFA finds use as an ion pairing agent in liquid chromatography, as a solvent in NMR spectroscopy and as a calibrant in mass spectrometry.


Trifluoroacetic acid (TFA) is a stable, hygroscopic, volatile and low-boiling organic acid. Storage in a cool place is recommended.

Literature References

Strong organic acid, widely used in peptide synthesis to cleave N-Boc and t-butyl ester groups: Helv. Chim. Acta, 46, 870 (1963); see also Org. Synth. Coll., 9, 24, 268 (1998). For peptide reagents, see Appendix 6. For selective cleavage of Boc in the presence of Cbz (Z), using 70% TFA in water, see: Liebigs Ann. Chem., 749, 90 (1971). For selective cleavage of benzyl, benzhydryl and trityl ethers in the presence of ester functions, see: Synthesis, 249 (1983).

Also catalyzes the cleavage of t-butyl groups from t-butylphenols, by reverse Friedel-Crafts reaction: Tetrahedron, 29, 4003 (1973). Similarly, hindered aryl ketones or aromatic carboxylic acids undergo deacylation: Synthesis, 979 (1985).

Carrying out the Curtius rearrangement of acyl azides in TFA leads directly to the trifluoroacetamide, which can be readily hydrolyzed to the free amine: Synthesis, 38 (1983).

With sodium nitrite, has been used for the cleavage of tosylhydrazones: Synthesis, 207 (1979); for nitrosation of anisole and derivatives, avoiding possible loss of the alkyl group: Acta Chem. Scand., 44, 152 (1990); for diazotization of weakly basic arylamines such as pentafluoroaniline or 3,5-dinitroaniline: Synthesis, 566 (1988); and in the presence of formamide, for deamination of arylamines: J. Chem. Soc., Perkin 1, 873 (1986).

For use of TFA as a catalyst in the Meerwein-Ponndorf-Verley reduction, see Aluminum isopropoxide, 14007. For use in the modification of the reducing properties of borohydride, see Sodium borohydride, 13432. For use in the ionic hydrogenation, see Triethyl­silane, A10320.

López, S. E.; Salazar, J. Trifluoroacetic acid: Uses and recent applications in organic synthesis. J. Fluorine Chem. 2013, 156, 73-100.

Natu, A. D.; Burde, A. S.; Limaye, R. A.; Paradkar, M. V. Acceleration of the Dakin reaction by trifluoroacetic acid. J. Chem. Res. 2014, 38 (6), 325-386.

GHS Hazard and Precautionary Statements

Hazard Statements: H314-H332-H412

Causes severe skin burns and eye damage. Harmful if inhaled. Harmful to aquatic life with long lasting effects.

Precautionary Statements: P260-P261-P273-P280-P303+P361+P353-P305+P351+P338-P301+P330+P331-P304+P340-P405-P501a

Do not breathe dust/fume/gas/mist/vapours/spray. Avoid breathing dust/fume/gas/mist/vapours/spray. Avoid release to the environment. Wear protective gloves/protective clothing/eye protection/face protection. IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. IF INHALED: Remove to fresh air and keep at rest in a position comfortable for breathing. Store locked up. Dispose of contents/container in accordance with local/regional/national/international regulations.

Other References

Hazard Class
Packing Group
Harmonized Tariff Code


Recently Viewed


Life Science

Metals & Materials


Analytical & Labware